Vision is the skill that allows us to see the world around us. When we observe the world, a complex series of processes takes place between the eye and the brain. The eyes take in the information, while the brain is responsible for processing and interpreting it. When the brain is injured, the ability to interpret visual information can be affected in different ways. This factsheet has been written to explain how brain injury can affect vision and where to seek support with these issues. Tips for coping with visual problems are also offered.

Words in bold are defined in a glossary at the end of the factsheet.

Introduction

Vision is the skill that allows us to see the world around us. When we observe the world, a complex series of processes takes place between the eye and the brain. The eyes take in the information, while the brain is responsible for processing and interpreting it. When the brain is injured, the ability to interpret visual information can be affected in different ways.

This factsheet has been written to explain how brain injury can affect vision and where to seek support with these issues. Tips for coping with visual problems are also offered.

What is vision?

There are lots of different aspects of vision. Some of the things the brain needs to do to decode information that it receives from the eyes are:

- process the shape and colour of objects
- recall information from memory to recognise objects or places
- process the movement of objects
- process the location and orientation of an object in space
- process information across the visual field (including peripheral vision)
- process and merge information received from both eyes

Generally, different parts of the brain are responsible for processing different aspects of vision. However, the majority of visual processing take place in an area at the back of the brain called the occipital lobe. Injury to the brain can therefore affect any aspect of vision, especially if the back of the brain is injured, through, for instance, a road traffic accident in which the brain is rocked back and forth.

Visual problems following brain injury can affect both the quality of the information received by the brain and interpretation of the information received. As a result, brain injury survivors can experience a number of different types of visual problems which can range from mild to severe depending on the nature of the injury.
Types of visual problems

Visual acuity loss
Visual acuity loss refers to a loss of clarity of vision, so that objects can seem blurry or unclear. This is also commonly known as ‘blurred vision’. If this occurs after a minor head injury, such as through a sporting accident, it is very important to attend your nearest Accident and Emergency Department as soon as possible.

Visual field loss
Parts of the visual field can be lost or affected after brain injury so that there may be missing patches across a section of it. A brain injury survivor with visual field loss can lose half of their whole visual field (known as hemianopia), a quarter of the field (quadrantanopia) or parts of the field seen by each eye. Vision might also be lost or affected around the edges or towards the centre of the visual fields.

Double vision
Double vision is also known as diplopia. It causes two images of a single object to be seen at the same time. This occurs because the brain is unable to merge the information it is receiving from both eyes. As with blurred vision, if this is experienced after a minor head injury it is very important to attend your nearest Accident and Emergency Department as soon as possible.

Nystagmus
Nystagmus is a condition in which there is an involuntary rhythmic shaking of the eyes, which may occur from side to side, up and down or in a circular motion. This affects the quality of visual information received by the brain, and can cause symptoms such as vertigo or nausea. Nystagmus that develops after brain injury is known as acquired nystagmus. It can occur following injury to a part of the brain called the cerebellum.

Blindness
Complete blindness after brain injury is rare. For this to occur, there must be significant damage to the optic nerves, the visual pathways (usually the occipital lobe) of the brain, or the occurrence of a penetrative injury such as a gunshot injury.

Visual agnosia
This is a term that covers an inability to recognise objects. There are two different types of visual agnosia: ‘apperceptive agnosia’ and ‘associative agnosia’. In apperceptive agnosia, there are problems with processing basic perceptual aspects of an object and integrating this information, so a survivor with this type of agnosia can struggle with identifying what an object is. In associative agnosia, a survivor retains the ability to identify visual aspects of an object but fails to recognise what it actually is. For instance, a survivor with associative agnosia holding a key might be able to describe its shape, how it...
feels and what it is used for, but fail to identify it as a ‘key’.

‘Face blindness’
Known as ‘prosopagnosia’, this is a specific type of agnosia and refers to a person being unable to interpret and recognise faces, including loved ones or famous faces. In extreme cases, a person may even be unable to recognise themselves. This occurs when a particular part of the brain responsible for processing faces, known as the fusiform face area is affected. For more information on this, see the Headway factsheet *Prosopagnosia - face blindness after brain injury*.

Visual neglect
This is sometimes referred to as ‘hemineglect’ or simply ‘neglect’. In this condition, a person fails to attend to visual information on one of their sides even though they can actually see it. They may, for instance, fail to eat half of their plate of food, or fail to brush their hair or teeth on one side. While hemineglect is, strictly speaking, more of a problem with attention than vision, it can be misinterpreted as a visual problem unless careful observation or testing is done.

Impact of visual problems

Vision is one of our most important senses, as it enables us to navigate our way around the world. When vision is affected, it can have a major impact on a range of day-to-day skills that we rely on to get around. Some examples of this are offered below.

Dizziness and balance problems
As the body’s balance system relies partly on visual information received, problems with vision can cause dizziness and balance issues. More information on this is available in the Headway factsheets *Balance problems and dizziness after brain injury - causes and treatments* and *Balance problems and dizziness after brain injury - tips and coping strategies*.

Driving
Driving relies heavily on the ability to quickly and accurately interpret visual information from the whole visual field. For instance, hazards can appear on the road any time, and a driver must be able to detect these before they become a danger and respond accordingly. As such, a person may be unable to drive if their vision has been affected after brain injury. Other effects of brain injury can also affect driving ability.

If you have had a significant brain injury and want to drive, you **must** inform the relevant licensing authorities. Failure to do this could result in a fine of up to £1,000. More information on this is available in the Headway booklet *Driving after brain injury*.
Employment and education
While vision can be an important part of many people’s employment or education, not all jobs rely heavily on it. Further, as part of the Equality Act (2010), all employers are required to make reasonable adjustments to the workplace for a disabled employee, so where vision may be limited, it is often possible to have adjustments made to the role or workplace environment. For example, brighter lights could be used where this helps, or audio recordings could be made of meetings rather than relying on written notes.

Further information on this is available in the Headway factsheets Returning to work after brain injury, Brain injury: a guide for employers and A guide to the Equality Act 2010.

Reading
Reading is an activity that people rely on for many day-to-day aspects of life, as well as leisure. Reading material can be made available in a range of different formats to assist people with visual problems. For instance, where vision is limited, audio books, increased brightness, text-to-speech readers and smartphone magnifiers can be used instead. Marking the tops of pages with brightly coloured sticky tabs can help people with visual neglect to attract their attention to neglected pages. Some people with hemianopia or quadrantanopia may also find it easier to read if the page is rotated by 90 degrees.

Socialising
We often rely on vision to socialise, for instance to recognise people we are meeting up with. This can be problematic if, for instance, a person has prosopagnosia (see section Types of visual problems). Navigating around can be challenging, or even risky, especially if parts of the visual fields are blurry or missing. If you have visual problems it can be helpful to talk these through with your friends so that you are socialising in an environment that is comfortable and safe for you. For guidance on talking to friends about the effects of brain injury, see the Headway factsheet Brain injury: a guide for friends.

Diagnosing and treating visual problems after brain injury
The visual pathway is a complex one, consisting of multiple stages between the eye and the brain. As a result, diagnosis can often be delayed even when visual problems have been detected, as clinicians need to identify whether the problems relate to the brain itself or the eyes.

Some basic visual tests such as visual acuity or visual field tests can be completed to test for visual problems following admission to hospital. In some cases of brain injury, it may be easier to detect damage to the brain using imaging tools such as CT or MRI scans. For more information on this, see the Headway factsheet Scans and tests after brain injury.
Ideally, a brain injury survivor with visual problems should be assessed by a neuro-ophthalmologist. These eye doctors specialise in the brain’s involvement of the visual system. Although neuro-ophthalmologists are not commonly found across the UK, it is always worth speaking to your GP or an optician in the first instance about trying to get a referral to one.

Ophthalmologists or orthoptists can also diagnose and treat the range of visual problems that commonly occur after brain injury, and are much more accessible in the UK. Again, you should speak to your GP or an optician about getting a referral to these professionals.

Some of the professionals listed above may also work in private practice.

Surgery can sometimes help visual problems that have arisen following eye damage caused by brain injury, for instance if there is bleeding in the eye or if activity in the muscles surrounding the eye need correcting following an injury to the brain. However, the use of this method is very specialised and will depend upon the exact nature of the visual problem at hand.

Tips for coping with visual problems after brain injury

As there are such a wide range of different types of visual problems after brain injury, there is no single way of coping with them. However, the following are commonly used methods to help with managing visual problems after brain injury.

- Less complex visual problems such as double vision can sometimes be corrected with the use of adjusted glasses or contact lenses, so an optician might be able to help with these.

- Adapted technology can make it more comfortable for you to use devices such as mobile phones and computers. For instance, many devices come with adjustable screen settings so that you can make text larger or more contrasted, or the screen can be made brighter. You could also use a screen reader, by which your computer or mobile can read text aloud.

- Visual prompts can help with some types of visual problems such as visual agnosia, prosopagnosia or visual neglect. For example, reminding people with visual neglect to turn their attention towards the neglected side of space can sometimes help. For people with prosopagnosia, focusing on non-facial features of a person, such as the person’s voice or hairstyle, can help with identifying them. For more tips on coping with prosopagnosia, see the Headway factsheet Prosopagnosia - face blindness after brain injury.
Take things at a slower pace where you can, especially if you have issues such as dizziness or balance problems.

Contact your local authority’s social services team for advice on how they can help. For instance, they might be able to offer personal care at home, help with shopping or arrange for adaptations to be made to your home to make it easier for you to get around safely and comfortably.

If you struggle with safely getting around by yourself, you could consider getting a guide dog. Remember that even though guide dogs have been trained to offer assistance, getting a dog can be a big commitment. You can get advice on whether this is a suitable option for you from organisations such as Guide Dogs (www.guidedogs.org.uk).

Don’t be afraid to ask for help! This can be from family, friends or even day-to-day encounters, such as someone standing at a bus stop with you, or someone working in a supermarket. You may find it helpful to show them your Headway Brain Injury Identity Card. To learn more about the card and apply, visit www.headway.org.uk/supporting-you/brain-injury-identity-card.

Conclusion

This factsheet has offered a brief overview of some of the common visual problems that can occur following brain injury. It is hoped that the information presented here has helped you to understand how and why vision can be affected following injury to the brain, and what can be done to help with visual problems.

To talk through any of the information in this factsheet, you can contact the Headway helpline on 0808 800 2244 or helpline@headway.org.uk.

For further information on brain injury, see the Headway website www.headway.org.uk.

Glossary

Apperceptive agnosia - an inability to interpret basic visual elements of an object and merge the information together

Associative agnosia - an inability to recall the name of objects despite visual perceptual functions being in tact

Minor head injury - an injury to the head through which the brain’s function is temporarily disrupted. For more information, see the Headway booklet *Minor head injury and*
concussion.

Occipital lobe - the region at the back of the brain responsible for visual processing

Ophthalmologist - a doctor who specialises in the treatment of eye disorders and injuries

Optic nerve - a nerve that carries messages from the eyes to the brain

Orthoptist - a professional that specialises in the treatment of eye movement disorders

Peripheral vision - vision that allows us to see things that are not being directly looked at

Visual acuity - the clarity of vision

Visual field - the entire area of space from left to right that the eyes should be able to see when pointing forwards

Acknowledgements: many thanks to Mr Tom Eke, Consultant Ophthalmologist at Norfolk and Norwich University NHS Foundation Trust, who kindly contributed to this factsheet and commented on drafts.

Please tell us how helpful this publication has been by filling in our short survey at www.surveymonkey.co.uk/r/hwpublications.